
International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 826
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

A Novel Shorten Erasure Based Reed Solomon
Fault Tolerance Code in Digital Format for

Commercial Cloud Storage
Ramprakash Kota 1, Dr.Rajasekhara Rao Kurra 2

1 Senior System Architect, USA, Research Scholar, Department of CSE, ANU, India.
2 Director, Sri Prakash College of Engineering (SPCE), Tuni, India.

Abstract— With the continuous growth in the cloud based applications and storage requirements on cloud, many
commercial cloud based storage service providers are making the market more competitive with the advanced
technologies and reduced cost. The advancement in technologies and high demand for fault tolerant storage solutions
most of the cloud based commercial storage service providers are now equipped with Erasure based Reed – Solomon fault
tolerance mechanism. However the additional cost for replication is still an overhead for service providers and customers.
In this work, we propose a novel erasure based code and further optimization as shortening the proposed code also for
the digital storage formats. The work also results into a comparative study of cost analysis for commercial cloud based
storage service providers. Finally the work demonstrates the improvement in code shortening and making the
performance higher.

Keywords: Erasure, Reed – Solomon, Code Shortening, Performance Comparison, Evolution Application, Response Time
Comparison, Dropbox, Google Drive, Hightail, OneDrive, SugarSync

——————————  ——————————

I. INTRODUCTION
In the past years, the high upcoming demand for storage

with high performance and reliability were been understood.
The industry was approaching towards a phase where the lack
of standardization of digital storage was limiting the
applications to make storage more reliable for commercial
storage providers. The major bottleneck for the
standardization was the non-standard storage solutions used
by different service providers. In the early 80’s, the industry
adopted cloud computing for distributed storage solutions.
The effort was well recognized and multiple companies came
together to form a consortium in order to frame the
standardization for digital storage.

As far as data storage is concerned, there are multiple

schemes are available to improve file and data compression.
The other most influencing parameters For instance, a data file
that is uploaded and accessed on the server may seriously be
effected by the network bandwidth as well as the server
workload. This will degrade the efficiency [1]. Moreover the
cloud storage services deals with a great scope and domain of
the data being storage and retrieved along with the frequency
of access varying depending on the mode of the operation
performed on the data [2]. Offering unlimited storage
container space might cause a high economic drawback on the
cloud storage provider and as well as the users due to
inefficient storage [3]. Hence, a technique or automation is
needed to find the best suitable storage structure based on cost

and other influencing factors. There are many free offerings of
the cloud storage services; however they may not suite the
application requirement to the best always [4].

Two major companies, Philips and Sony took the major

initiative to define the standard storage formats in digital
media. The standard is well accepted today and been referred
as compact storage format. This standard format is majorly
used for achieving any data, which also reduces the storage
cost compared to the early storage formats. However the
compact storage format has limitations in order to achieve
high availability. It is difficult to predict how a storage media
gets corrupted. In the earlier studies we have understood the
reasons for storage device failure. Henceforth we realise the
following errors for storage failures as

(1) The additional noise affecting the storage during
transmission or during retrieval And

(2) Mishandling of the removable devices

The most important improvement in the recent time for

fault tolerance in digital media storages is the Reed – Solomon
code. The basic benefit of the Reed – Solomon codes is to
rearrange so that the timely restoration can be achieved for
storage devices. Thus in this work we concentrate on further
enhancement of the Erasure based fault tolerance mechanism.

The rest of the work is framed such as in Section II we

understand the cost effectiveness of the commercial cloud
storage solutions, in Section III we realise the basic Reed

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 827
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Solomon Fault Tolerance scheme, in Section IV we propose
the novel Reed – Solomon based code, in Section V we
propose the further optimization of the proposed code, in
Section VI we discuss the implementation and results and in
Section VII we conclude the work.

II. COMMERCIAL CLOUD STORAGE SERVICES
As the choice of storage services from cloud is not limited

and most of those are configured to give best advantages for
specific type of data and operation, we compare most of the
services here [5 – 7].

A. Dropbox
The Dropbox is a storage service which is available for

client side access for Windows systems, Linux Systems,
Macintosh systems, Blackberry mobile operating systems,
Android mobile operation systems and finally the IPhone
operating systems. The free Basic account comes with a paltry
2GB of storage. For document based applications this is huge.
The Storage service is good choice for applications using the
container for read only data.

Table 1. Cost Comparison for Dropbox.
Data Load Cost

Load in GigaBytes Price in US Dollars
100 99 USD
200 99 USD
300 99 USD
400 499 USD
500 499 USD
1000 Not Available

> 1000 Not Available

Here we provide a graphical representation of the cost price

comparison:

Fig.1. Cost Comparison for Dropbox

Table 2. Support for Mobile Based Cloud Applications in
Dropbox

Client OS Type Support
Apple IPhone Operating

Systems
Available

Android Mobile Operating
Systems

Available

Blackberry Operating
Systems

Available

Microsoft Mobile
Operating System

Available

B. Google Drive
The most popular cloud storage service is Drive storage

from Google. The basic account comes with 15 Giga bytes of
storage for a new customer account or an existing account
created with Google Email. The highest rated benefit of the
Google Drive is the service can be also be integrated with
other existing google services for storing various types of data
from other services.

Table 3. Cost Comparison for Google Drive

Data Load Cost
Load in Giga Bytes Price in US Dollars

100 60 USD
200 120 USD
300 120 USD
400 240 USD
500 240 USD
1000 600 USD

> 1000 1200 to 9600 USD
Here we provide a graphical representation of the cost price
comparison:

Fig.2. Cost Comparison for Google Drive

Table 4. Support for Mobile Based Cloud Applications in Google
Drive

Client OS Type Support
Apple IPhone Operating Available

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 828
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Systems
Android Mobile Operating

Systems
Available

Blackberry Operating
Systems

Not Available

Microsoft Mobile
Operating System

Not Available

C. Hightail
The previous version of business cloud storage of Hightail

was popular by name of YouSendIt. The basic reason for
creating the name was the core of the features that Hightail
provides. Hightail is majorly known for sharing files, which
can be digitally signed for verifications. The core technology
behind this provider is link sharing, where the sender can
upload a file and the link to that same file can be shared with
the recipient. The recipient can click on the link to download
the same. This service is popular for business users as it
provides the private cloud storage and the desktop version of
the client, which can be used for syncing local files to the
cloud storage.

Table 5. Cost Comparison for Hightail

Data Load Cost
Load in Giga Bytes Price in US Dollars

100 Free
200 Free
300 Free
400 Free
500 Free
1000 Free

> 1000 195 USD

Table 6. Support for Mobile Based Cloud Applications in Hightail

Client OS Type Support
Apple IPhone Operating

Systems
Available

Android Mobile Operating
Systems

Not Available

Blackberry Operating
Systems

Not Available

Microsoft Mobile
Operating System

Not Available

D. OneDrive
The OneDrive was previously popular as SkyDrive. The

functionalities are mostly same as Dropbox. The most
important factor for this storage service is that the client
version is available for Windows systems, Linux Systems,
Macintosh systems, Blackberry mobile operating systems,
Android mobile operation systems and finally the IPhone
operating systems. Moreover the supports for social media
plug-ins are also available here. This feature makes the
application more compatible with other applications to access
data directly.

Table 7. Cost Comparison for OneDrive

Data Load Cost
Load in Giga Bytes Price in US Dollars

100 50 USD
200 100 USD
300 Not Available
400 Not Available
500 Not Available
1000 Not Available

> 1000 Not Available

Here we provide a graphical representation of the cost price
comparison:

Fig.3. Cost Comparison One Drive

Table 8. Support for Mobile Based Cloud Applications in OneDrive

Client OS Type Support
Apple IPhone Operating

Systems
Available

Android Mobile Operating
Systems

Available

Blackberry Operating
Systems

Available

Microsoft Mobile
Operating System

Available

E. SugarSync
The SugarSync is majorly popular among business users

for its effective and fast online backup solutions. The service
can also be used for complete folder and individual file
syncing with multiple applications and multiple users.
Moreover the service provides a unique function to share the
stored content over multiple devices at same point of time but
with different permission levels. The most important factor for
this storage service is that the client version is available for
Android mobile operation systems and also the IPhone
operating systems.

Table 9. Cost Comparison for SugerSync

Data Load Cost
Load in Giga Bytes Price in US Dollars

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 829
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

100 99 USD
200 250 USD
300 250 USD
400 250 USD
500 250 USD
1000 550 USD

> 1000 Pay Per Use

Here we provide a graphical representation of the cost price
comparison:

Fig.4. Cost Comparison for Sugar Sync

Table 10. Support for Mobile Based Cloud Applications in
SugerSync

Client OS Type Support
Apple IPhone Operating

Systems
Available

Android Mobile Operating
Systems

Available

Blackberry Operating
Systems

Available

Microsoft Mobile
Operating System

Available

III. REED – SOLOMON CODE FOR FAULT TOLERANCE

The most important factor that makes Reed-Solomon

framework to implement is the simplicity. Here in this work
we consider the scenario to compare the performance of Reed
– Solomon and Proposed Encoding technique [8].

We consider there will be K storage devices each hold n

bytes of data such that,
1 2 3, kD D D D D= ∑ …Eq 1

 Where D is the collection of storage devices

Also there will be L storage devices each hold n bytes of

check sum data such that,
1 2 3, , LC C C C C= ∑ …Eq 2

Where C is the collection of Checksum devices

The checksum devices will hold the calculated values from
each respective data storage devices.

The goal is to restore the values if any device from the C

collection fails using the non – failed devices.

The Reed – Solomon deploys a function G in order to
calculate the checksum content for every device in C. Here for
this study we understand the example of the calculation with
the values as K = 8 and L = 2 for the devices C1and C2 with
G1 and G2 respectively [9].

The core functionalities of Reed – Solomon is to break the

collection of storage devices in number of words [10] [11].
Here in this example we understand the each number of words
is of u bits randomly. Hence the words in each device can be
assumed as v, where v is defined as

8 1(). .bits wordv nbytes
byte uBits

  
=   

   
 … Eq 3

Furthermore, v is defined as
8nV
u

= …Eq 4

Henceforth, we understand the formulation for checksum

for each storage device as
1 2 3.(, , ...)i i kC W D D D D= …Eq 5

Where the coding function W is defined to operate on each
word

After the detail understanding of the Erasure fault
tolerance scheme, we have identified the limitations of the
applicability to the cloud storage services and propose the
novel scheme for fault tolerance in this work in the next
section.

IV. PROPOSED NOVEL FAULT TOLERANCE SCHEME

With the understanding of the limitations of existing

erasure codes to be applied on the cloud based storage systems
as the complex calculations with erasure codes will reduce the
performance of availability measures significantly. Thus we
make an attempt to reduce the calculation complexities with
simple mathematical operations in the standard erasure
scheme.

The checksum for storage devices are considered as Ci

from the Eq 5. We propose the enhancement as the following
formulation for checksum calculation:

1 2 3 1 2 3.(, , ...) (...)i i k i kC W D D D D W D D D D= = ⊕ ⊕ ⊕

 …Eq 6

Here the XOR operation being the standard mathematical

operation most suitable for logical circuits used in all standard
hardware makes it faster to be calculated.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 830
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Also we redefine the function to be applied on each word
for the storage devices D as following:

1,1 1,

,1 ,

. . .
.
.
.

. . .

L

K K L K X L

w w

W

w w

 
 
 
 =
 
 
  

 …Eq 7

The proposed matrix will be stored on one of the devices

and will be recalculated only once. As the modified checksum
formulation is an XOR operation, thus which will
automatically notify in case of any change.

Furthermore, we optimize the proposed code framework in

the next section.

V. OPTIMIZING PROPOSED NOVEL FAULT TOLERANCE
SCHEME

The Reed Solomon code is expressed by the power of
coefficient denoted by n for the data blocks, where n is
expressed as

n = 2 1m − …Eq 8
and the code blocks are represented as

2 1 2mk t= − − …Eq 9

Where m represents the number of bits per data and t

represents the capability of correcting errors. In general the
Reed – Solomon code considers an 8 bit data and 2 bit code,
the error correcting code can be represented as (255,251) code.

Here in this part of the work, we try to optimize the code

length further to reduce the replication cost. The steps of the
optimization algorithm are explained here:

Step-1. First we consider the effective code in

(255,251) block, where the code is consisting of
zero and non-zero codes.

Step-2. Then we find the number of zero codes in
the segment. For instance the numbers of zero
codes are 227 in the code block. These codes will
not have any effect in the error correction and fault
tolerance mechanism.

Step-3. Then we find the effective block of the code
as (28,24) for a 2 bit error correction code.

Step-4. Hence as a final outcome of the
optimization technique, we got the optimized code
block.

VI. IMPLEMENTATION AND RESULTS

To simulate and understand the improvement in the
outcomes we implement the Reed – Solomon code with the
enhancement and optimization proposed in this work.

We accept any random data as the initial data block for the

testing [Table -11].

Table 11. Initial Data Block

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 1 0 1
1 0 1 0
0 1 0 1
1 1 1 0
0 1 1 1
1 1 1 1
1 0 1 1
1 0 0 1

Based on the modified fault tolerance scheme, we realise

the addition and multiplication table [Table -12 & 13].

Table 12. Addition Table

 0 a^0 a^1 a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^10 a^11 a^12 a^13 a^14

0 |0 a^0 a^1 a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^10 a^11 a^12 a^13 a^14
a^0 |a^0 0 a^4 a^8 a^14 a^1 a^10 a^13 a^9 a^2 a^7 a^5 a^12 a^11 a^6 a^3
a^1 |a^1 a^4 0 a^5 a^9 a^0 a^2 a^11 a^14 a^10 a^3 a^8 a^6 a^13 a^12 a^7
a^2 |a^2 a^8 a^5 0 a^6 a^10 a^1 a^3 a^12 a^0 a^11 a^4 a^9 a^7 a^14 a^13
a^3 |a^3 a^14 a^9 a^6 0 a^7 a^11 a^2 a^4 a^13 a^1 a^12 a^5 a^10 a^8 a^0
a^4 |a^4 a^1 a^0 a^10 a^7 0 a^8 a^12 a^3 a^5 a^14 a^2 a^13 a^6 a^11 a^9
a^5 |a^5 a^10 a^2 a^1 a^11 a^8 0 a^9 a^13 a^4 a^6 a^0 a^3 a^14 a^7 a^12
a^6 |a^6 a^13 a^11 a^3 a^2 a^12 a^9 0 a^10 a^14 a^5 a^7 a^1 a^4 a^0 a^8
a^7 |a^7 a^9 a^14 a^12 a^4 a^3 a^13 a^10 0 a^11 a^0 a^6 a^8 a^2 a^5 a^1
a^8 |a^8 a^2 a^10 a^0 a^13 a^5 a^4 a^14 a^11 0 a^12 a^1 a^7 a^9 a^3 a^6
a^9 |a^9 a^7 a^3 a^11 a^1 a^14 a^6 a^5 a^0 a^12 0 a^13 a^2 a^8 a^10 a^4
a^10 |a^10 a^5 a^8 a^4 a^12 a^2 a^0 a^7 a^6 a^1 a^13 0 a^14 a^3 a^9 a^11
a^11 |a^11 a^12 a^6 a^9 a^5 a^13 a^3 a^1 a^8 a^7 a^2 a^14 0 a^0 a^4 a^10
a^12 |a^12 a^11 a^13 a^7 a^10 a^6 a^14 a^4 a^2 a^9 a^8 a^3 a^0 0 a^1 a^5
a^13 |a^13 a^6 a^12 a^14 a^8 a^11 a^7 a^0 a^5 a^3 a^10 a^9 a^4 a^1 0 a^2
a^14 |a^14 a^3 a^7 a^13 a^0 a^9 a^12 a^8 a^1 a^6 a^4 a^11 a^10 a^5 a^2 0

Table 13. MULTIPLICATION TABLE

 0 a^0 a^1 a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^10 a^11 a^12 a^13 a^14

0 |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a^0 |0 a^0 a^1 a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^10 a^11 a^12 a^13 a^14
a^1 |0 a^1 a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^10 a^11 a^12 a^13 a^14 a^0
a^2 |0 a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^10 a^11 a^12 a^13 a^14 a^0 a^1
a^3 |0 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^10 a^11 a^12 a^13 a^14 a^0 a^1 a^2
a^4 |0 a^4 a^5 a^6 a^7 a^8 a^9 a^10 a^11 a^12 a^13 a^14 a^0 a^1 a^2 a^3
a^5 |0 a^5 a^6 a^7 a^8 a^9 a^10 a^11 a^12 a^13 a^14 a^0 a^1 a^2 a^3 a^4
a^6 |0 a^6 a^7 a^8 a^9 a^10 a^11 a^12 a^13 a^14 a^0 a^1 a^2 a^3 a^4 a^5
a^7 |0 a^7 a^8 a^9 a^10 a^11 a^12 a^13 a^14 a^0 a^1 a^2 a^3 a^4 a^5 a^6
a^8 |0 a^8 a^9 a^10 a^11 a^12 a^13 a^14 a^0 a^1 a^2 a^3 a^4 a^5 a^6 a^7
a^9 |0 a^9 a^10 a^11 a^12 a^13 a^14 a^0 a^1 a^2 a^3 a^4 a^5 a^6 a^7 a^8
a^10 |0 a^10 a^11 a^12 a^13 a^14 a^0 a^1 a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9
a^11 |0 a^11 a^12 a^13 a^14 a^0 a^1 a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^10
a^12 |0 a^12 a^13 a^14 a^0 a^1 a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^10 a^11
a^13 |0 a^13 a^14 a^0 a^1 a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^10 a^11 a^12
a^14 |0 a^14 a^0 a^1 a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^10 a^11 a^12 a^13

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 831
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Henceforth, we compare the results of the generic Reed-
Solomon Coding and the proposed fault tolerance technique
[Table – 14] based on the initial code.

Table 14. MULTIPLICATION TABLE

Parameter Generic RS Proposed
Optimized RS

Initial
Polynomial

a^1 a^3 a^5 a^1 a^3 a^5

Encoded Data a^5 a^3 a^1 a^6
a^4 a^2 a^0

0 0 0 a^6
a^4 a^2 a^0

Fault
Tolerance
Code

a^5 a^3 a^1 a^6
a^4 a^2 1

a^6 a^4 a^2 1

Optimization
Reduction

0% 57%

VII. CONCLUSION
In this work the commercial cloud storage services are been

compared based on the cost and performance factors. The
result of the comparative measures provided the
understanding of the demand for highly reliable and cost
effective fault tolerance system. Henceforth, in this work we
study the core Reed - Solomon fault tolerance mechanism
based on Erasure codes. The work contributes towards the
improved performance code for fault tolerance for digital
storage devices rather than magnetic. Also the work enhanced
the performance of the proposed technique by applying the
improvement in terms of optimization. The result of the
proposed optimization technique is 57% reduction in the
storage cost without negotiating with the fault tolerance
reliability.

REFERENCES

[1] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao,
“Oceanstore: An Architecture for Global-Scale Persistent Storage,”
Proc. Ninth Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 190-201, 2000.

[2] P. Druschel and A. Rowstron, “PAST: A Large-Scale, Persistent Peer-
to-Peer Storage Utility,” Proc. Eighth Workshop Hot Topics in
Operating System (HotOS VIII), pp. 75-80, 2001.

[3] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J.R.
Douceur, J. Howell, J.R. Lorch, M. Theimer, and R. Wattenhofer,
“Farsite: Federated, Available, and Reliable Storage for an
Incompletely Trusted Environment,” Proc. Fifth Symp. Operating
System Design and Implementation (OSDI), pp. 1-14, 2002.

[4] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Highly Durable,
Decentralized Storage Despite Massive Correlated Failures,” Proc.
Second Symp. Networked Systems Design and Implementation (NSDI),
pp. 143-158, 2005.

[5] Q. Tang, “Type-Based Proxy Re-Encryption and Its Construction,”
Proc. Ninth Int’l Conf. Cryptology in India: Progress in Cryptology
(INDOCRYPT), pp. 130-144, 2008.

[6] G. Ateniese, K. Benson, and S. Hohenberger, “Key-Private Proxy Re-
Encryption,” Proc. Topics in Cryptology (CT-RSA), pp. 279-294, 2009.

[7] J. Shao and Z. Cao, “CCA-Secure Proxy Re-Encryption without
Pairings,” Proc. 12th Int’l Conf. Practice and Theory in Public Key
Cryptography (PKC), pp. 357-376, 2009.

[8] J. Bellorado and A. Kavcic , "Low-complexity soft-decoding
algorithms for Reed-Solomon codes: An algebraic soft-in hard-out
chase decoder" , IEEE Trans. Inf. Theory. , vol. 56 , no. 3 , pp.945 -
959 , 2010

[9] F. Garc-Herrero, J. Valls and P. K. Meher , "High-speed RS (255, 239)
decoder based on LCC decoding" , Circuits Syst. Signal Process. , vol.
30 , no. 6 , pp.1643 -1669 , 2011

[10] W. Zhang, H. Wang and B. Pan , "Reduced-complexity LCC Reed-
Solomon decoder based on unified syndrome computation" , IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. , vol. 21 , no. 5 , pp.974 -
978 , 2013

[11] J. Jiang and K. R. Narayanan , "Algebraic soft-decision decoding of
Reed-Solomon codes using bit-level soft information" , IEEE Trans.
Inf. Theory , vol. 54 , no. 9 , pp.2008 -3928

ABOUT THE AUTHORS

Mr.RamPrakash Kota is a Senior System Architect
working for Medical Client, USA. He worked at BVRIT Narsapur for 3 years
as an Assistant Professor in the department of MCA. He worked as an IT
Analyst for 4 years for TCS. Currently he Pursuing Ph.D in the area of Cloud
Computing from Acharya Nagarjuna University, Guntur, India.

Dr. Rajasekhara Rao Kurra, Director, Sri
Prakash College of Engineering(SPCE), Prof. Kurra Rajasekhara Rao is a
Professor of Computer Science & Engineering and presently working as
Director, Sri Prakash College of Engineering(SPCE),Tuni. He worked at
KLCE/K.L.University for 20 years as a faculty member in various positions
as HOD of CSE, HOD of IT,Vice-Principal, Principal, K L College of
Engineering (Autonomous), and Dean (Administration), Dean (Faculty &
Student Affairs) Dean (Examinations & Evaluation) of KLU. Having more
than 28+ years of teaching and research experience, Prof. KRR is actively
engaged in the research related to Embedded Systems, Software Engineering
and Knowledge Management. He had obtained Ph.D in Computer Science &
Engineering from Acharya Nagarjuna University (ANU), Guntur, Andhra
Pradesh, India. He is a Life Member of ISCS, IE, ISTE, CSI and IETE. He
published more than 80 papers in various International/National Journals,
Conferences and produced 4 Ph.D's till now.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 832
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

IJSER

http://www.ijser.org/

